## EXERCISES

Mathematica $6 \sim$ Lab Number 1

Problem 1. Evaluate

$$
\int_{0}^{\pi} \cos (x \sin \theta) d \theta
$$

and use $\operatorname{Plot}[\%,\{\boldsymbol{x}, \mathbf{0}, \mathbf{2 0}\}]$ to plot the famous result. Demonstrate that Plot [Evaluate [ $\left.\int_{0}^{\pi} \cos (x \sin \theta) d \theta\right],\{x, 0,20\}$ ] does the same job without the distraction of intermediate output.

Convince yourself that Mathematica struggles inconclusively if the Evaluate [ ] detail is omitted: you will have to abort (Control-period) after 30 seconds or so, or the Kernel will exhaust its memory and shut down.

Command Mathematica to tell you about Evaluate.
Problem 2. Create a link, named "FibonacciBiography," to the Wikipedia website that provides such information.

The Fibonacci numbers are defined recursively

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n}=F_{n-1}+F_{n-2} \quad: \quad n=3,4,5, \ldots
$$

and grow very rapidly. We are interested in discovering how rapidly. To that end, determine the numerical values of $F_{51} / F_{50}$ and $F_{101} / F_{100}$.

Looking to the numerical values of $F_{101} / F_{100}$ and $F_{100} / F_{101}$, we conclude that the asymptotic value of $F_{n+1} / F_{n}$ is a solution of the equation

$$
x=1+1 / x
$$

Command Solve $[\mathbf{x}=\mathbf{= 1 + 1 / \mathbf { x } , \mathbf { x } ] \text { to discover the solutions of that equation, }}$ evaluate the positive solution and compare that number to the numerical value of GoldenRatio. Evidently

$$
F_{n} \sim a \cdot b^{n} \quad: \quad \text { What is the value of } b ?
$$

Use $\log F_{n}-n \log b \sim \log a$ with $n=50,100$ to obtain an estimate of the value of $a$. Look in this connection to the value of $\log (1 / \sqrt{5})$.

Use what you now know about the values of $a$ and $b$ to construct 40-place evaluations of the ratios

$$
\frac{F_{50}}{a b^{50}} \quad \text { and } \quad \frac{F_{100}}{a b^{100}}
$$

Next construct the generating function

$$
\sum_{n=1}^{\infty} \frac{1}{n!} F_{n} x^{n}
$$

and process the output with the successive commands
Series [ $\%,\{x, 0,5\}]$
Simplify[\%]

Finally, use

## $\log f i b=T a b l e[\log [F i b o n a c c i[k]],\{k, 1,100\}] / / N$

to construct a list of the logs of the first 100 Fibonacci numbers, and then use ListPlot to display that data. Call that figure FibonacciPoints. Plot $\log \left(a b^{n}\right): 0 \leqslant n \leqslant 100$ and call that figure FibonacciLine. Superimpose those two figures.

Problem 3. A curve is described parametrically by the equations

$$
\begin{aligned}
& x(t)=\sin (5 t) \cos (2 t) \\
& y(t)=\sin (3 t) \sin (2 t)
\end{aligned}
$$

Assuming $0 \leq t \leq 2 \pi$, use ParametricPlot to display that curve. Do the same after installation of these options:

## Axes->None, Frame->True, AspectRatio->Automatic

Do the same after you have changed Frame->True to Frame->False and installed the option Ticks->False.

Problem 4. Let $g_{1}, g_{2}, g_{7}$ and $g_{8}$ be the names assigned to plots (assume $0 \leq x \leq 2 \pi$ and install the option PlotRange->All) of the functions

$$
\begin{aligned}
& f_{1}(x)=\sin ^{1} x \\
& f_{2}(x)=\sin ^{2} x \\
& f_{7}(x)=\sin ^{7} x \\
& f_{8}(x)=\sin ^{8} x
\end{aligned}
$$

Construct a $2 \times 2$ composite figure in which $g_{1}, g_{2}, g_{7}$ and $g_{8}$ occupy the NW, NE, SW and SE positions, respectively. How to do so? Ask ?Grid.

Problem 5. Define

$$
f(x)=\sum_{k=1}^{30} \frac{1}{k+k^{\frac{1}{3}}} \sin 2 \pi k x
$$

and-using //Timing to record how long it takes Mathematica to do the workplot that function on the interval $0<x<2$.
REMARK: It took Mathematica 5.2 a much longer time to produce an inferior result: one had to install options MaxBend->1 and PlotPoints->120 to achieve the resolution that Mathematica 6 has here achieved automatically.

Problem 6. Construct a contour plot of the function

$$
\begin{aligned}
f(x, y)= & \frac{1}{(x-1)^{2}+(y-1)^{2}}-\frac{3}{(x-1)^{2}+(y+1)^{2}} \\
& +\frac{1}{(x+1)^{2}+(y+1)^{2}}-\frac{3}{(x+1)^{2}+(y-1)^{2}}
\end{aligned}
$$

Stipulate that $-10 \leqslant x \leqslant 10$ and $-10 \leqslant y \leqslant 10$.
Do the same after installing the option PlotPoints->100.
Remove that option and install the option ContourShading->False.
Construct a figure showing the curve that is defined implicitly by the equation

$$
x^{2}+\frac{1}{4} y^{2}=1
$$

Stipulate that $-3 \leqslant x \leqslant 3$ and $-3 \leqslant y \leqslant 3$. Turn the frame off, install axes in its place.

